ww.adais.com

Psicrometria Aplicada à Armazenagem de Grãos

Por: Luís César da Silva

Abstract

Psychrometry Applied to Grain Storage

(AGAIS - Technical Bulletin: AG: 01/2023 - 01/09/2023)

Psychrometry is an area of knowledge focused on determining physical and thermodynamic air properties, which are made up of gases and water vapor. These gases are nitrogen (78.1%), oxygen (21.0%), noble gases (0.9%), carbon dioxide (0.03%), and others. Knowledge of psychometrics is fundamental for understanding grain processing operations such as wet-holding bin aeration, high and low-temperature drying, dry-aeration, and colling and aeration of stored products. Because these operations can involve mass (water vapor) and heat transfer between air and product.

Dr. Luís César da Silva – website: www.agais.com

1. Introdução

Psicrometria é uma área do conhecimento voltada à determinação das propriedades físicas e termodinâmicas do ar, que é constituído por gases e vapor de água. Os gases correspondem ao nitrogênio (78,1%), oxigênio (21,0%), gases nobres (0,9%), gás carbônico (0,03%), dentre outros. Desse modo, didaticamente o ar é dividido em duas frações: ar seco e vapor de água. Em psicrometria é pressuposto que a massa de ar seco é constante, enquanto a de vapor de água pode aumentar ou diminuir. Sendo assim, as quantidades horárias de ar seco que entram e saem de um secador são iguais, enquanto as de vapor de água é maior na saída.

O conhecimento de psicrometria é fundamental para o entendimento de operações como aeração em silo-pulmão, secagem em alta e baixa temperaturas, seca-aeração, aeração e resfriamento de produto armazenado. Isso se dá em razão dessas operações envolverem trocas de calor e, ou, massa (vapor de água) entre o ar e os grãos.

Na condução dessas operações, de acordo com suas especificidades, ocorrem alterações das propriedades psicrométricas do ar, como o volume específico, razão de mistura, pressão de vapor, umidade relativa, temperatura e entalpia. Na definição dessas propriedades é tomado como pressupostos que o volume específico corresponde ao volume em que está contido 1,0 kg de ar seco e uma determinada quantidade de vapor de água. Por exemplo, para o ar com temperatura de 22,0 °C e umidade relativa de 80%, o volume específico equivalerá a 0,915 m³ de ar/kg de ar seco (Figura 01). Portanto, nesse volume de 0,915 m³ (915 L) está contido 1,0 kg de ar seco e 14,2 g de vapor de água.

¹ Artigo publicando na Revista Grãos Brasil, Ano XX, nº 117, dezembro de 2022, p. 32 - 35.

Série: Armazenagem de Grãos. Vicosa: MG.

Boletim Técnico: AG: 01/23 em 09/01/2023 - Sítio: www.agais.com

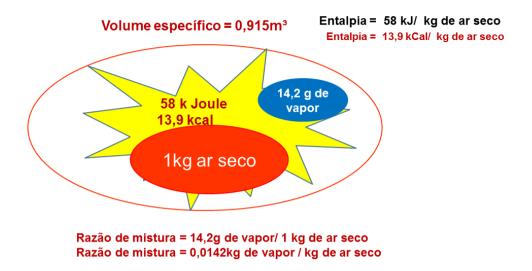


Figura 01 – Representação do volume de controle para o ar com temperatura de 22,0 °C, e umidade relativa de 80%, Maringá-PR, altitude de 542 m.

Para esse cenário, a razão de mistura corresponde à razão entre as massas de vapor de água e de ar seco, correspondendo, portanto, a 14,2 g de vapor de água/kg de ar seco. Esse quantitativo de vapor de água, para o momento, corresponde a 80% da quantidade de vapor se o ar estivesse saturado (17,8 g). Desse modo, a propriedade umidade relativa é calculada pela relação percentual entre a razão de mistura atual e razão de mistura do ar saturado (= 14,2/17,8).

Além da razão de mistura e umidade relativa, outra propriedade que faz referência à quantidade de vapor de água no ar é a pressão de vapor. De acordo com a Lei de Dalton, os gases em uma mistura exercem pressões parciais proporcionais à concentração. Desse modo, para o ar atmosférico, o somatório das pressões parciais dos gases mais a pressão parcial associada à quantidade de vapor corresponderá à pressão atmosférica, que normalmente é expressa em hectopascal (hPa) ou milímetros de mercúrio (mm Hg).

Por exemplo, para a cidade de Maringá-PR, com altitude de 542 m, ao ocorrer a temperatura de 22,0 °C e umidade relativa de 80%, a pressão atmosférica corresponde a 946,92 hPa (710,3 mm Hg). Nessa condição, o gás nitrogênio com participação de 78,1% no ar responderá pela pressão parcial de 739,5 hPa (552,0 mm Hg), enquanto para vapor de água a pressão de vapor será 21,2 hPa (15,9 mm Hg). E caso o ar estivesse saturado, umidade relativa de 100%, a pressão de vapor seria 26,4 hPa (19,8 mm Hg). Desse modo, outra forma de calcular a umidade relativa se dá pela relação percentual entre a pressão de vapor atual e pressão de vapor do ar saturado.

Dependendo do aporte de calor da mistura ar seco e úmido é definida a entalpia, que para o ponto de estado caracterizado na Figura 1 corresponde a 13,9 kcal/kg de ar seco (58 kJ/kg de ar seco). Em operações como aeração em silo-pulmão, secagem, seca-aeração, aeração e resfriamento é dada a maior importância à variação da entalpia, o que propicia calcular, por exemplo, o aporte de calor necessário a ser transferido para a realização da secagem, ou a quantidade de calor a ser removido do ar para a condução da operação de resfriamento dos grãos armazenados.

2. Determinação das propriedades psicométricas

Para a determinação das propriedades podem ser empregados psicrômetros, termo-higrômetros ou sensores eletrônicos de temperatura e umidade relativa. O psicrômetro, Figura 02, possui dois termômetros: o de bulbo seco e o de bulbo úmido. O termômetro de bulbo seco mede a temperatura do ar, enquanto o de bulbo úmido, envolto por um cadarço de algodão umedecido com água, simula a temperatura de um sistema em que está ocorrendo a evaporação de água, em razão do potencial de secagem do ar. Sendo assim, conhecendo os valores das temperaturas o usuário, por meio de uma tabela, determinará a umidade relativa. Por meio dessa tabela o usuário constatará que quanto maior a diferença entre as temperaturas de bulbo seco e bulbo úmido menor será a umidade relativa, o que implica em maior potencial de secagem do ar. Em caso de as temperaturas serem iguais, a umidade relativa será igual a 100%, ou seja, o ar estará saturado.

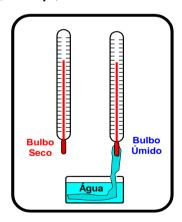


Figura 02 – Desenho esquemático de um psicrômetro.

Ao se utilizar programas de computador, como os disponibilizados no site www.agais.com, seção Aplicativos "on line", ou de gráfico psicrométrico, é possível determinar as propriedades psicrométricas do ar, desde que sejam conhecidas, as coordenadas do ponto de estado, como por exemplo a temperatura de bulbo seco versus

- Doletiiii i

ww.adais.com

temperatura de bulbo úmido, umidade relativa, razão de mistura, volume específico ou entalpia.

3. Dinâmica da variação das propriedades

A variação das propriedades psicrométricas do ar é dinâmica, como demostrado na Figura 03, que traz as variações da temperatura e umidade relativa para a cidade de Maringá-PR durante o dia 17/03/2012. Constata-se que essas propriedades variam em razão inversa, pois quanto maior a temperatura do ar menor é a umidade relativa, e vice-versa. Assim, os maiores valores de umidade relativa ocorrem entre às 3 h e 10 h, alçando valores próximos de 90%. Enquanto os maiores valores para temperatura ocorreram ao final da tarde com o pico de 31,1 °C às 18 h, nesse momento a umidade relativa correspondeu a 50%. Na Tabela 01 são destacadas as variações do volume específico, razão de mistura, pressão de vapor e entalpia ao longo do dia 17/03/2012 em Maringá-PR.

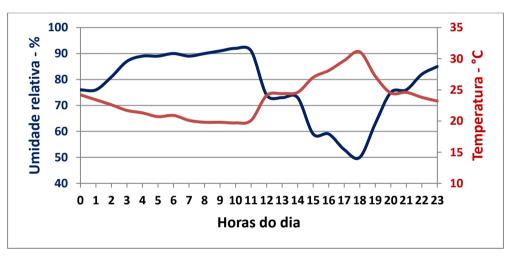


Figura 03 – Variação da umidade relativa e temperatura para a cidade de Maringá-PR, em 17/03/2012

Tabela 01 – Variação das propriedades psicrométricas do ar para a cidade de Maringá-PR, altitude 542 m, em 17/03/2012

Hora	Temperatura	Umidade relativa	Volume específico	Razão de Mistura	Pressão de vapor	Entalpia
	(°C)	(%)	(m³ de ar/ kg ar seco)	(g de vapor/ kg ar seco)	(hPa)	(k cal/ kg ar seco)
04:00	21,3	89	0,914	15,2	22,5	14,3
08:00	19,8	90	0,908	13,4	23,1	13,2
12:00	24,1	74	0,923	14,9	30,0	14,9
16:00	28,1	59	0,935	15,1	22,4	16,0
20:00	24,5	75	0,925	15,5	30,1	15,3
24:00	24,2	76	0,924	15,5	30,2	15,2

ww.adais.com

4. Psicrometria e secagem de grãos

A secagem a alta temperatura caracteriza-se por empregar ar aquecido em mais de 10 °C em relação à temperatura ambiente, o que eleva o potencial de secagem do ar que se traduz na redução da umidade relativa e em aumentos da temperatura e entalpia.

Na Tabela 02 são apresentadas as condições psicrométricas do ar ambiente e do ar de secagem aquecido até 90 °C. Observa-se que a umidade relativa do ar reduziu de 80 para 3.0%, enquanto a entalpia aumentou de 13,9 para 30,7 kcal/kg de ar seco.

Tabela 02 – Representação das alterações das propriedades do ar mediante o processo de aquecimento

Propriedades do ar	Ar		Unidade	
	Ambiente	de Secagem		
Temperatura	22,0	90,0	°C	
Umidade relativa	80,0	3,0	%	
Razão de mistura	14,2	14,2	g de vapor/kg de ar seco	
Razão de mistura do ar saturado	17,8	473,3	g de vapor/kg de ar seco	
Pressão de vapor	21,2	21,2	hPa	
Pressão de vapor do ar saturado	26,5	706,7	hPa	
Volume específico	0,915	1,126	m³ de ar/kg de ar seco	
Entalpia	13,9	30,7	kcal/kg de ar seco	

A redução da umidade relativa está associada ao aumento da razão de mistura do ar saturado de 17,8 $(14,2 \div 80)$ para 473,3 $(14,2 \div 3,0)$ g de vapor/kg de ar seco. Ou seja, ao ar ambiente para chegar ao estado de saturação deve-se acrescer mais 3,6 g de vapor, enquanto ao ar de secagem 459,1 g de vapor. Evidentemente, isso ocorreria se o ar de exaustão em um secador apresentasse a umidade relativa de 100%, o que é fictício.

Na Figura 03 é representada uma situação de ocorrência passível. Nesse caso, tratase de um secador de fluxos misto tipo cavalete com capacidade horária de 40 t/h, operando com vazão do ar de secagem igual a 100 mil m3 de ar/h, que ao se dividir pelo volume específico (0,915 m³ de ar/kg de ar seco) é determinada vazão mássica igual a 109 mil kg de ar seco/h. Ao se calcular a diferença entre as razões de mistura do ar de secagem e o da exaustão (18 g de vapor/kg de ar seco) e multiplicá-la pela vazão mássica é calculada a quantidade de vapor de água transferida ao ar, que nesse caso corresponde a 1.967,4 kg de água/h.

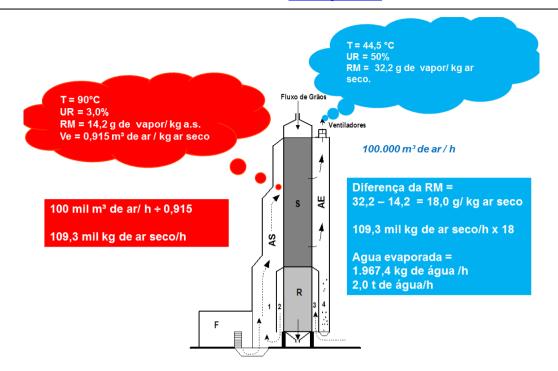


Figura 03 – Uso de pirometria em sistema de secagem.

Ressalta-se que a quantidade de vapor de água transferida ao ar de exaustão dependerá do teor de água e da temperatura do produto. Os cálculos apresentados referemse à redução do teor de água de 18,0 para 13,0%.

5. Psicrometria e aeração de grãos

Os materiais biológicos como grãos e sementes são higroscópios, portanto possuem a capacidade de trocar água na forma de vapor com o ar circunvizinho.

Sobre a superfície dos materiais biológicos está presente uma finíssima camada de ar constituindo um microclima, onde as propriedades psicrométricas são definidas em função do teor de água e da temperatura do produto de dada espécie e variedade. Desse modo, quanto maiores o teor de água e a temperatura dos grãos, maiores serão a umidade relativa, pressão de vapor e razão de mistura nesse microclima. Esse fato decorre do aumento da quantidade de vapor de água nesse microclima.

Por exemplo, para grãos de milho com teor de água de 19,0% e temperatura 26,0 °C, o ar presente nos microclimas possuirá umidade relativa de 90%, pressão de vapor 33,61 hPa (25,2 mm Hg) e razão de mistura 19 g de vapor/kg de ar seco. Sendo assim, em um silo-pulmão contendo bilhões de grãos de milho com teor de água de 19,0% e temperatura 26,0 °C, fará com que a umidade relativa do ar intergranular seja de 90%, o que favorece a proliferação de fungos. Mas se os grãos de milho estivessem com teor de água de 13,0% e

Boletim Técnico: AG: 01/23 em 09/01/2023 - Sítio: www.agais.com

temperatura 20,0 °C, a umidade relativa do ar intergranular seria 60%, inviabilizando assim ao desenvolvimento de fungos.

Na interação ar circunvizinho e grãos poderão ocorrer trocas de calor e vapor de água. Por exemplo, se pela massa de grãos passar um fluxo de ar com pressão de vapor menor que a pressão de vapor sobre as superfícies dos grãos, será estabelecido um gradiente em que o fluxo de massa de vapor dar-se-á dos grãos para o ar. Portanto, ocorrerá a secagem dos grãos. Essa troca ocorrerá até que as pressões de vapor se igualem, estabelecendo assim a condição denominada equilíbrio higroscópico.

Caso o gradiente seja estabelecido em sentido contrário, a massa de vapor do ar migrará para os microclimas nos entornos dos grãos, potencializando o desenvolvimento de fungos em razão da maior disponibilidade de água no ar. O desenvolvimento de fungos na massa de grãos pode elevar a temperatura e os riscos de contaminação por micotoxinas.

Portanto, é errôneo afirmar que a aeração de grãos com ar úmido, alta umidade relativa, proporcionará o aumento do teor de água dos produtos armazenados.

Desse modo, na condução da operação de aeração, para que não ocorra troca de vapor de água entre os grãos, o fluxo de ar a ser insuflado deve estar em equilíbrio higroscópio com a massa de grãos.

6. Ponderações Finais

Toda unidade armazenadora deve dispor de estação meteorológica para fundamentar tomadas de decisão, principalmente na condução da operação de aeração.

Este artigo foi redigido como o intuito de despertar em operadores e gerentes operacionais de unidades armazenadoras a importância dos conhecimentos básicos de transferência de calor e massa e de psicrometria na condução das operações: aeração em silo-pulmão, secagem, seca-aeração e a aeração ou resfriamento dos produtos em armazenamento.

Para os tempos atuais, em que são ressaltados a importância da otimização de processos, o uso racional de energia e a preservação das qualidades físico-química, nutricional e sanitária dos grãos, são necessários aprimoramentos quanto aos fundamentos das formas de condução das operações unitárias do sistema unidade armazenadora, que envolvem trocas de calor e massa entre a massa de grãos e o ar.

7. Referências

SILVA, L. C.; QUEIROZ; D. M.; FLORES, R. A. e MELO, E. C. A simulation toolset for modeling grain storage facilities. Journal of Stored Products Research, v. 48, p. 30-36, 2012.

AGAIS - Armazenagem de Grãos, Agroindústria e Simulação

Série: Armazenagem de Grãos. Viçosa: MG.

Boletim Técnico: AG: 01/23 em 09/01/2023 - Sítio: www.agais.com

SILVA, L. C. Stochastic simulation of the dynamic behavior of grain storage facilities. 2002. 104 f. Tese (Doutorado em Engenharia Agrícola) - Departamento de Engenharia Agrícola, Universidade Federal de Viçosa, Viçosa, 2002.

SILVA, L. C. *Aeração:* suporte a tomada de decisão. Boletim técnico AG02/17. [Sitio: www.agais.com], Alegre: ES. 2017. 11p.

NAVARRO, S.; NOYES, R. *The mechanics and physics of modern grain aeration management*. CRC Press, 2002. 672 p.